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Conditions at discontinuity surfaces in polarizable media in the presence of an 

electric field are defined. It is shown with the use of the concept of evolution 
that in electrohydrodynamics the majority of gases with their characteristic lin- 

ear dependence of permittivity on density suffer compression shocks known in 

conventional hydr~ynami~, 

1, Condition8 at discontfnuitftr, Let us consider a medium which in an 
electric field is polarizable according to the linear rule D = eE, where the medium 
permittiviq E is a function of density and temperature. Let us formulate the conditions 

at the discontinuity surface in such media. 

Let Z be a surface bounding volume V which contains a certain part of the discon- 
tinuity surface S, 11 be a vector of the normal to surface Z, L be the contour bounding 

surface L, defined by the intersection of volume v by a plane passing through the nor- 

mal n and tangent z to X at some point M. 

We consider a stabilized motion. Using all fundamental equations of motion of a po- 

la&able fluid in their integral form in approximations common to electrohydrodynamics 

and, passing to the limit by ~n~acting v and Z to S and S to some point M, we 

obtain at the discontinuity the following conditions: 

{P%J = 0 ’ 
I 

PV, + P -t g- I&_ p (-$)J~}=O (1.1) 
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{D,, = 0, {E’,)=O \{f)-11-h) 

Let us condider two kinds of shocks: (a) a shock without flow of fluid through the dis- 

continuity surface and (b) a shock through which the fluid flows. 

a) If the normal velocity component at the discontinui~ is zero, we have the fol- 
lowing relationships : 

arbitrary pl,s and yT1,s 

w-i- (q-(-g& + a]}+ -$$- p- P ($&,)= 0 

Hence it is possible to obtain from the integral equation the relation between the jumps 

of pressure and of the electric field. 

b) assuming that v, # 0 and setting vrl = 0 which results in vtz = 0, we obtain 

k%J = 0 

PV, P,f + 

(1.2) 

{P+$jp(+$ +s]} t-g{+ P (%)J 
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{D,,> = 0, I-Q = 0 
2, Equation of the rhock sdirbeto and moment& in the ca:e 

when permittivity depandr only .on dcnaity; Let us consider the case 
which is characteristic of the majority of gases, i. e. when permittivity is a linear func- 

tion of density: E - 1 = clp in a fairly wide range of temperatures. 
We introduce the notation 

P2, v=$, ER 
e%=qp 

=Y+i 
pv,=m, a*=apl, k= r-_1 , Q= .,n2 

PIP1 

For a perfect gas, after some computations, we obtain from system (1.2) the equation 

for the shock adiabate r 
eQ.z*- (1 - T33 

J 

1 P 

(a* i_ V)2 ’ 
w=qp 

(2.1) 

This equation has two asymptotes 

P= - (1 + e%F) / k, V= lfk 

This shows that in the interval 1 / k<V<1 the shock adiabate monotonically decrea- 

ses with increasing V. Equations of the adiabate are shown in Fig, 1 in the form of 
curves drawn in solid lines, 

From system (1.2) it is also possible to derive the equation of momenta 

P=1+9(1-v)- &x** (2-V) (Za’ + 1 + ii’) 

(a‘ + u2 

which has two asymptotes : v = - a+ and P = - CO. It will be seen that 

3P / 8V = 0 for V,,, = [2e2a+2 (a* + 1)s / Q*is/]- 09 

For a medium defined by parameters p - 10-S g/cm J, u - 103 cm /set, and E < 30 
cgse units, we obtain V,,, < 1. The curve of this equation of momenta is shown in 
Fig S 1. by a solid line which intersects the adiabate (2.1) at two points, 

3, Evofutfonrry propertier of electro~ydtodynAmlc shock WIVQI. 
It is shown in fl] that a discontinue is stable 
if the number of weak perturbations radiating 

from it is smaller by one than the number of 
equations. Two kinds of weak perturbations are 

known in electrohydrodynamics [2. 33, namely : 
entropy waves which propagate together with 
the fluid and acoustic waves which propagate 

at the speed a = k (a20 -j- a9pE2 / 4 ICE)“‘. If 

the velocity of these waves is directed away 
from the shock wave, we shall consider themas 
coming toward the discontinuity. For fixed D, 
and E, the dis~ntinui~ isdefined by three equa- 
tions of conservation : of mass, momentum, and 

Fig. 1 energy. Hence for the evolution to take place 
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it is necessary that two waves radiate from the discontinuity. This occurs when the velo- 
city upstream of the discontinuity is higher than the speed of sound, while the velocity 
downstream of it is lower than the speed of sound, i.e. v1 > a, and v2 < a2. The condi- 

tion v1 > a, implies that 

vrz> a$ + a2p,Et’ / 4 ne or - Q + e2a*2 / (a* + 1) < - y (3.1) 

The left-hand side of the last inequality contains a quantity which is the tangent of the 

slope of the curve which represents the equation of conservation of momenta, while that 

in the right-hand side is the tangent of the shock adiabate at point 1/ = 1, P = 1. It 
follows from (3.1) that in the case of evolutionary waves the line corresponding to the 
equation of conservation of momenta at point li =- 1, P = 1 for V < 1 lies above the 

shock adiabate and must always intersect the latter in the interval 1 / li <: 1/ < 1. We 
have thus established that in electrohydrodynamics in the case of linear dependence of 

permittivity on density shock waves are always compression waves. The normal compo- 
nent of the elctric field downstream of the wave front is smaller than the normal com- 

ponent of that field upstream of the front. 

It will be seen from (2.1) that for V < i the curve of the shock adiabate lies higher 

than the conventional gasdynamic adiabate, i. e. it is in region ,!? > s,, where Sr is the 

entropy at point P = 1, V = 1. The increase of entropy at the shock also shows that the 

latter is a compression shock. 
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The stability of a Couette flow of incompressible non-Newtonian second-order 

fluid at high Reynolds numbers [l] is considered within the limits of the linear 
theory of hydrodynamic stability. Unlike the Couette flow of a Newtonian (first- 
order) fluid which according to the linear theory is stable, the flow considered 
here may loose its stability even in the linear approximation. 

The problem of hydrodynamic stability of simple flows of non-Newtonian fluids was 
considered in a fairly large numer of publications [2-41 in which the effect of elastic 


